Pharmaceutical-grade albumin: impaired drug-binding capacity in vitro
نویسندگان
چکیده
BACKGROUND Albumin is the most abundant protein in blood plasma, and due to its ligand binding properties, serves as a circulating depot for endogenous and exogenous (e.g. drugs) compounds. Hence, the unbound drug is the pharmacologically active drug. Commercial human albumin preparations are frequently used during surgery and in critically ill patients. Recent studies have indicated that the use of pharmaceutical-grade albumin is controversial in critically ill patients. In this in vitro study we investigated the drug binding properties of pharmaceutical-grade albumins (Baxter/Immuno, Octapharma, and Pharmacia & Upjohn), native human serum, and commercially available human serum albumin from Sigma Chemical Company. METHODS The binding properties of the various albumin solutions were tested in vitro by means of ultrafiltration. Naproxen, warfarin, and digitoxin were used as ligands. HPLC was used to quantitate the total and free drug concentrations. The data were fitted to a model of two classes of binding sites for naproxen and warfarin and one class for digitoxin, using Microsoft Excel and Graphpad Prism. RESULTS The drugs were highly bound to albumin (95-99.5%). The highest affinity (lowest K1) was found with naproxen. Pharmaceutical-grade albumin solutions displayed significantly lower drug-binding capacity compared to native human serum and Sigma albumin. Thus, the free fraction was considerably higher, approximately 40 times for naproxen and 5 and 2 times for warfarin and digitoxin, respectively. The stabilizers caprylic acid and N-acetyl-DL-tryptophan used in the manufacturing procedure seem to be of importance. Adding the stabilizers to human serum and Sigma albumin reduced the binding affinity whereas charcoal treatment of the pharmaceutical-grade albumin from Octapharma almost restored the specific binding capacity. CONCLUSION This in vitro study demonstrates that the specific binding for warfarin and digitoxin is significantly reduced and for naproxen no longer detectable in pharmaceutical-grade albumin. It further shows that the addition of stabilizers may be of major importance for this effect.
منابع مشابه
Fluoxetin Competes with Cortisol for Binding to Human Serum Albumin
Human serum albumin (HSA) is an important protein that carries variety of substances like some hormones and drugs in blood. Pharmacological studies of the interaction of many drugs and HSA are reported during several decades, specially recently years. Interaction of cortisol and fluoxetine hydrochloride (FLX) (as a common anti-stress drug) with HSA (as their carrier in blood) has been studied s...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملFluoxetin Competes with Cortisol for Binding to Human Serum Albumin
Human serum albumin (HSA) is an important protein that carries variety of substances like some hormones and drugs in blood. Pharmacological studies of the interaction of many drugs and HSA are reported during several decades, specially recently years. Interaction of cortisol and fluoxetine hydrochloride (FLX) (as a common anti-stress drug) with HSA (as their carrier in blood) has been studied s...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملINVESTIGATIONS ON THE DRUG-PROTEIN IN TERAC TION OF CERTAIN NEW POTENTIAL LOCAL ANAESTHETICS
Generally, plasma proteins owe their binding capacity to the presence of aminoacid units which enter into intra- and intermolecular hydrophobic bonding with a diverse range of endo- and exogenous chemical substances. The intermolecular interactions between the hydrophobic areas of drug molecules and those of plasma proteins play an important role in drug-macromolecular complex formation and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Clinical Pharmacology
دوره 4 شماره
صفحات -
تاریخ انتشار 2004